skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Woodruff, David P"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Woodruff, David P. (Ed.)
    Graph sparsification has been an important topic with many structural and algorithmic consequences. Recently hypergraph sparsification has come to the fore and has seen exciting progress. In this paper we take a fresh perspective and show that they can be both be derived as corollaries of a general theorem on sparsifying matroids and monotone submodular functions. Quotients of matroids and monotone submodular functions generalize k-cuts in graphs and hypergraphs. We show that a weighted ground set of a monotone submodular function f can be sparsified while approximately preserving the weight of every quotient of f with high probability in randomized polynomial time. This theorem conceptually unifies cut sparsifiers for undirected graphs [BK15] with other interesting applications. One basic application is to reduce the number of elements in a matroid while preserving the weight of every quotient of the matroid. For hypergraphs, the theorem gives an alternative approach to the hypergraph cut sparsifiers obtained recently in [CKN20], that also preserves all k-cuts. Another application is to reduce the number of points in a set system while preserving the weight of the union of every collection of sets. We also present algorithms that sparsify hypergraphs and set systems in nearly linear time, and sparsify matroids in nearly linear time and queries in the rank oracle model. 
    more » « less
  2. Woodruff, David P. (Ed.)
    Matroids are a fundamental object of study in combinatorial optimization. Three closely related and important problems involving matroids are maximizing the size of the union of $$k$$ independent sets (that is, \emph{$$k$$-fold matroid union}), computing $$k$$ disjoint bases (a.k.a.\ \emph{matroid base packing}), and covering the elements by $$k$$ bases (a.k.a.\ \emph{matroid base covering}). These problems generalize naturally to integral and real-valued capacities on the elements. This work develops faster exact and/or approximation problems for these and some other closely related problems such as optimal reinforcement and matroid membership. We obtain improved running times both for general matroids in the independence oracle model and for the graphic matroid. The main thrust of our improvements comes from developing a faster and unifying \emph{push-relabel} algorithm for the integer-capacitated versions of these problems, building on previous work by [FM12]. We then build on this algorithm in two directions. First we develop a faster augmenting path subroutine for $$k$$-fold matroid union that, when appended to an approximation version of the push-relabel algorithm, gives a faster exact algorithm for some parameters of $$k$$. In particular we obtain a subquadratic-query running time in the uncapacitated setting for the three basic problems listed above. We also obtain faster approximation algorithms for these problems with real-valued capacities by reducing to small integral capacities via randomized rounding. To this end, we develop a new randomized rounding technique for base covering problems in matroids that may also be of independent interest. 
    more » « less
  3. Woodruff, David P. (Ed.)
    We give improved algorithms for maintaining edge-orientations of a fully-dynamic graph, such that the maximum out-degree is bounded. On one hand, we show how to orient the edges such that maximum out-degree is proportional to the arboricity $$\alpha$$ of the graph, in, either, an amortised update time of $$O(\log^2 n \log \alpha)$$, or a worst-case update time of $$O(\log^3 n \log \alpha)$$. On the other hand, motivated by applications including dynamic maximal matching, we obtain a different trade-off. Namely, the improved update time of either $$O(\log n \log \alpha)$$, amortised, or $$O(\log ^2 n \log \alpha)$$, worst-case, for the problem of maintaining an edge-orientation with at most $$O(\alpha + \log n)$$ out-edges per vertex. Finally, all of our algorithms naturally limit the recourse to be polylogarithmic in $$n$$ and $$\alpha$$. Our algorithms adapt to the current arboricity of the graph, and yield improvements over previous work: Firstly, we obtain deterministic algorithms for maintaining a $$(1+\varepsilon)$$ approximation of the maximum subgraph density, $$\rho$$, of the dynamic graph. Our algorithms have update times of $$O(\varepsilon^{-6}\log^3 n \log \rho)$$ worst-case, and $$O(\varepsilon^{-4}\log^2 n \log \rho)$$ amortised, respectively. We may output a subgraph $$H$$ of the input graph where its density is a $$(1+\varepsilon)$$ approximation of the maximum subgraph density in time linear in the size of the subgraph. These algorithms have improved update time compared to the $$O(\varepsilon^{-6}\log ^4 n)$$ algorithm by Sawlani and Wang from STOC 2020. Secondly, we obtain an $$O(\varepsilon^{-6}\log^3 n \log \alpha)$$ worst-case update time algorithm for maintaining a $$(1~+~\varepsilon)\textnormal{OPT} + 2$$ approximation of the optimal out-orientation of a graph with adaptive arboricity $$\alpha$$, improving the $$O(\varepsilon^{-6}\alpha^2 \log^3 n)$$ algorithm by Christiansen and Rotenberg from ICALP 2022. This yields the first worst-case polylogarithmic dynamic algorithm for decomposing into $$O(\alpha)$$ forests. Thirdly, we obtain arboricity-adaptive fully-dynamic deterministic algorithms for a variety of problems including maximal matching, $$\Delta+1$$ colouring, and matrix vector multiplication. All update times are worst-case $$O(\alpha+\log^2n \log \alpha)$$, where $$\alpha$$ is the current arboricity of the graph. For the maximal matching problem, the state-of-the-art deterministic algorithms by Kopelowitz, Krauthgamer, Porat, and Solomon from ICALP 2014 runs in time $$O(\alpha^2 + \log^2 n)$$, and by Neiman and Solomon from STOC 2013 runs in time $$O(\sqrt{m})$$. We give improved running times whenever the arboricity $$\alpha \in \omega( \log n\sqrt{\log\log n})$$. 
    more » « less
  4. Bojanczyk, Mikolaj; Merelli, Emanuela; Woodruff, David P. (Ed.)
    In this survey we describe progress over the last decade or so in understanding the complexity of solving constraint satisfaction problems (CSPs) approximately in the streaming and sketching models of computation. After surveying some of the results we give some sketches of the proofs and in particular try to explain why there is a tight dichotomy result for sketching algorithms working in subpolynomial space regime. 
    more » « less
  5. Bojańczyk, Mikołaj; Merelli, Emanuela; Woodruff, David P (Ed.)
    Given n points in 𝓁_p^d, we consider the problem of partitioning points into k clusters with associated centers. The cost of a clustering is the sum of p-th powers of distances of points to their cluster centers. For p ∈ [1,2], we design sketches of size poly(log(nd),k,1/ε) such that the cost of the optimal clustering can be estimated to within factor 1+ε, despite the fact that the compressed representation does not contain enough information to recover the cluster centers or the partition into clusters. This leads to a streaming algorithm for estimating the clustering cost with space poly(log(nd),k,1/ε). We also obtain a distributed memory algorithm, where the n points are arbitrarily partitioned amongst m machines, each of which sends information to a central party who then computes an approximation of the clustering cost. Prior to this work, no such streaming or distributed-memory algorithm was known with sublinear dependence on d for p ∈ [1,2). 
    more » « less
  6. Bojanczyk, Mikolaj; Merelli, Emanuela; Woodruff, David P. (Ed.)
    We continue a line of work on extracting random bits from weak sources that are generated by simple processes. We focus on the model of locally samplable sources, where each bit in the source depends on a small number of (hidden) uniformly random input bits. Also known as local sources, this model was introduced by De and Watson (TOCT 2012) and Viola (SICOMP 2014), and is closely related to sources generated by AC⁰ circuits and bounded-width branching programs. In particular, extractors for local sources also work for sources generated by these classical computational models. Despite being introduced a decade ago, little progress has been made on improving the entropy requirement for extracting from local sources. The current best explicit extractors require entropy n^{1/2}, and follow via a reduction to affine extractors. To start, we prove a barrier showing that one cannot hope to improve this entropy requirement via a black-box reduction of this form. In particular, new techniques are needed. In our main result, we seek to answer whether low-degree polynomials (over 𝔽₂) hold potential for breaking this barrier. We answer this question in the positive, and fully characterize the power of low-degree polynomials as extractors for local sources. More precisely, we show that a random degree r polynomial is a low-error extractor for n-bit local sources with min-entropy Ω(r(nlog n)^{1/r}), and we show that this is tight. Our result leverages several new ingredients, which may be of independent interest. Our existential result relies on a new reduction from local sources to a more structured family, known as local non-oblivious bit-fixing sources. To show its tightness, we prove a "local version" of a structural result by Cohen and Tal (RANDOM 2015), which relies on a new "low-weight" Chevalley-Warning theorem. 
    more » « less